The FJ was designed in 1956 by Uus van Essen in close cooperation with Coen Gulcher and was adopted as an International Class in 1969.
INDEX

PART I – ADMINISTRATION

Section A – General
A.1 Language ..
A.2 Abbreviations
A.3 Authorities and Responsibilities
A.4 Administration of the Class
A.5 ISAF Rules
A.6 Sailing Instructions
A.7 Class Rules Amendments
A.8 Class Rules Interpretations
A.9 International Class Fee(s) and ISAF Plaque
A.10 Sail Numbers
A.11 Certification
A.12 Validity of Certificates
A.13 Compliance with Class Rules
A.14 Re-Certification

Section B – Boat Eligibility
B.1 Certificate

PART II – REQUIREMENTS AND LIMITATIONS

Section C – Conditions for Racing
C.1 General ...
C.2 Crew ...
C.3 Personal Equipment
C.4 Advertising
C.5 Portable Equipment
C.6 Boat ..
C.7 Hull ..
C.8 Hull Appendages
C.9 Rig ..
C.10 Sails ...

Section D – Hull
D.1 General ..}
D.2 Hull Shell
D.3 Buoyancy Tanks
D.4 Gunwale Rubbing Strakes
D.5 Assembled Hull

Section E – Hull Appendages
E.1 Parts ...
E.2 General ...
E.3 Prohibitions

Section F – Rig
F.1 Parts ...
F.2 General ...
F.3 Mast ...
F.4 Boom ...
F.5 Spinnaker Pole
F.6 Standing Rigging
F.7 Running Rigging

Section G – Sails
G.1 Parts ...
G.2 Rules ...
G.3 Certification
G.4 Construction
G.5 Mainsail ..
G.6 Headsail ..
G.7 Spinnakers

Section H, official plans
H.1 official plans
H.2 guidance plans
H.3 recommended class flag
INTRODUCTION

The intention of these rules is to ensure that boats in the International FJ Class are as alike as possible in hull form, hull weight, shape of centerboard and rudder blade, mast and mast weight and sail plan.

FJ hulls, hull appendages, Rigs and Sails are measurement controlled.

Owners and crews should be aware that compliance with rules in Section C is NOT checked as part of the certification process.

Rules regulating the use of equipment during a race are contained in Section C of these class rules, in ERS Part I and in the Racing Rules of Sailing.

This introduction only provides an informal background and the International FJ Class Rules proper begin on the next page.
PART I – ADMINISTRATION

Section A – General

A.1 LANGUAGE
A.1.1 The official language of the class is English and in case of dispute over translation the English text shall prevail.
A.1.2 The word “shall” is mandatory and the word “may” is permissive.

A.2 ABBREVIATIONS
A.2.1 ISAF International Sailing Federation
MNA ISAF Member National Authority
IFJO International FJ Organization
NFJO National FJ Class Organization
ERS Equipment Rules of Sailing
RRS Racing Rules of Sailing

A.3 AUTHORITIES AND RESPONSIBILITIES
A.3.1 The international authority of the class is the ISAF, which shall co-operate with the IFJO in all matters concerning these class rules.
A.3.2 No legal responsibility with respect to these class rules, or accuracy of measurement, rests with:

the ISAF,
the MNA,
the IFJO,
an NFJO.

the certification authority,
an official measurer,

No claim arising from these class rules can be entertained.
A.3.3 Notwithstanding anything contained herein, the certification authority has the authority to withdraw a certificate and shall do so on the request of the ISAF.

A.4 ADMINISTRATION OF THE CLASS
A.4.1 ISAF has delegated its administrative functions of the class to MNAs. The MNA may delegate part or all of its functions, as stated in these class rules, to an NFJO.
A.4.2 In countries where there is no MNA, or the MNA does not wish to administrate the class, its administrative functions as stated in these class rules shall be carried out by the IFJO which may delegate the administration to an NFJO.

A.5 ISAF RULES
A.5.1 These class rules shall be read in conjunction with the ERS.
A.5.2 Except where used in headings, when a term is printed in “**bold**” the definition in the ERS applies and when a term is printed in “*italics*” the definition in the RRS applies.

A.6 **SAILING INSTRUCTIONS**
A.6.1 These **class rules** shall not be varied by sailing instructions.

A.7 **CLASS RULES AMENDMENTS**
A.7.1 Amendments to these **class rules** shall be proposed by the IFJO and subject to approval of the ISAF in accordance with the ISAF Regulations.

A.8 **CLASS RULES INTERPRETATIONS**
A.8.1 **GENERAL**
Interpretation of **class rules**, except as provided by A.8.2, shall be made in accordance with the ISAF Regulations.

A.8.2 **AT AN EVENT**
Any interpretation of **class rules** required at an event may be made by an international jury constituted in accordance with the RRS. Such interpretation shall only be valid during the event and the organising authority shall, as soon as practical after the event, inform the ISAF, the MNA and the IFJO.

A.9 **INTERNATIONAL CLASS FEE(S) AND ISAF BUILDING PLAQUE**
A.9.1 The builder shall pay the International Class Fee to the ISAF.
A.9.2 ISAF shall, after having received the International Class Fee for the **hull**, send the ISAF Building Fee Plaque to the **hull** builder. The ISAF Building Plaque shall be fixed by the builder into the **hull** and the builder shall deliver the international class fee receipt to the owner.
A.9.3 The amount of the International Class Fee shall be reviewed by the ISAF in consultation with the IFJO.
A.9.4 Hulls built, measured and registered before 1st July 1972 do not need to have an International Class Fee paid to the ISAF.

A.10 **SAIL NUMBERS**
A.10.1 Sail numbers shall be issued by the MNA.

A.11 **CERTIFICATION**
A.11.1 For a **hull** not previously **certified**, all items required to be measured by the measurement form shall be measured by an **official measurer** and the details entered onto the measurement form.
A.11.2 Three copies of the completed measurement form shall be supplied to the owner of the **hull**.
A.11.3 The owner shall send three copies of the completed measurement form together with any **certification** fee to the **certification authority** in the country where the **hull** is to be registered within 4 weeks after completion of measurement.
A.11.4 Upon receipt of the three copies of the satisfactorily completed measurement form and the fee the certification authority may issue a certificate. The certificate shall contain the information as stated on the measurement form.

A.11.5 The certification authority shall retain the original measurement forms which shall be transferred to the new certification authority when a hull is exported.

A.11.6 The IFJO shall receive at regular intervals from each MNA details of sail numbers together with the names and addresses of owners and a copy of the measurement forms, or measurement certificates.

A.12 VALIDITY OF CERTIFICATES

A.12.1 A certificate becomes invalid upon:
(a) the date of expiry,
(b) change of ownership,
(c) withdrawal by the certification authority,
(d) the issue of another certificate.

A.13 COMPLIANCE WITH CLASS RULES

A.13.1 A boat ceases to comply with the class rules upon:
(a) Alterations, replacements or repairs beyond the limits of the class rules.
(b) A change of class rules that causes equipment in use to cease to be permitted, except where the equipment may comply with the class rules in force at the time of its initial fundamental measurement.

A.14 RE-CERTIFICATION

A.14.1 A hull may be re-certified by the issue of a new certificate, showing dates of initial and new fundamental measurement as applicable:
(a) WHEN A CERTIFICATE BECOMES INVALID UPON CHANGE OF OWNERSHIP

The new owner shall apply for re-certification by sending the old certificate, and fee if required, to the CA in the country where the hull is to be re-certified. If this CA is different from the previous CA then the new CA should receive the hull measurement form(s) from the old CA prior to re-certification. The new CA may issue the hull a new identification number(s).

(b) WHEN A CERTIFICATE HAS BEEN WITHDRAWN, OR WHEN THE CERTIFICATE AND MEASUREMENT FORM(S) CANNOT BE LOCATED

The owner shall arrange for fundamental measurement as required for initial certification and then apply for re-certification by sending the hull measurement form(s), and fee if required, to the CA in the country where the hull is to be re-certified. The new CA may issue the hull a new identification number(s).

A.14.2 A boat that has ceased to comply with its certificate it may be brought into compliance:
(a) WHEN THE LIMITATIONS AFFECTING THE EQUIPMENT ARE CONTROLLED BY THE CLASS RULES
 By carrying out fundamental measurement of the affected equipment,

(b) WHEN THE LIMITATIONS AFFECTING THE EQUIPMENT ARE ON THE CERTIFICATE
 By carrying out fundamental measurement of affected equipment as required for initial certification.

A14.3 The hull may be measured in accordance with the class rules current when it was first measured.

Section B – Boat Eligibility

For a boat to be eligible when racing, the rules in this section shall be complied with.

B.1 CERTIFICATE
B.1.1 The hull shall have a valid certificate.
PART II – REQUIREMENTS AND LIMITATIONS

The crew and the boat shall comply with the rules in Part II when racing. Measurement to check conformity with rules of Section C is not part of fundamental measurement.

The rules in Part II are open class rules. Measurement shall be carried out in accordance with the ERS except where varied in this Part.

Section C – Conditions for Racing

C.1 GENERAL

C.1.1 RULES
(a) The ERS Part I – Use of Equipment shall apply.
(b) The following RRS rules shall not apply:
 (1) The Racing Rule RRS 49 is amended to permit a trapeze system.
 (2) RRS 50.2

C.2 CREW

C.2.1 LIMITATIONS
The crew shall consist of 2 persons, each in contact with the boat at all times.

C.3 PERSONAL EQUIPMENT

C.3.1 MANDATORY
(a) The boat shall be equipped with personal buoyancy for each crew member to the minimum standard EN 393: 1995 (CE 50 Newtons), or USCG Type III, or AUS PFD 1. They must be available at all times.
(b) The trapeze shall consist of two wires attached directly or indirectly to the mast spar, one on each side, which can be fastened to a trapeze harness to enable not more than one crew member to stand outside the gunwale. The weight of the trapeze harness shall not exceed 3kg.

C.4 ADVERTISING

C.4.1 LIMITATIONS
Advertising shall only be displayed in accordance with Category C of the ISAF Advertising Code.

C.5 PORTABLE EQUIPMENT

C.5.1 FOR USE
(a) Mandatory
 (1) One hand bailer or bucket except in boats fitted with a self-bailer.
(b) Optional
 (1) Two timing devices. No other electronic instruments are permitted.
 (2) If an anchor is prescribed in the Sailing Instructions the anchor, chain, and rode shall weigh at least 2.3 kg with 20 m synthetic line, minimum diameter 6 mm attached to the anchor and boat. The anchor shall be ready to use.

C.5.2 NOT FOR USE
(a) Mandatory
 (1) Towing rope minimum 20 m long of not less than 6 mm in diameter. The rope shall not be stowed in a buoyancy tank and shall be ready to use.
 (2) One efficient paddle minimum length 0.900 m, minimum weight 0.300 kg. The paddles shall not be stowed in buoyancy tanks and shall be ready to use.

C.6 BOAT

C.6.1 FLOTATION
The hull shall have buoyancy tanks, and/or firmly attached buoyancy bags, sufficient to float the boat, plus 150 kg approximately level when capsized or full of water.

C.6.2 CORRECTOR WEIGHTS
Corrector weights shall be permanently fastened to the hull when the hull weight is less than the minimum requirement.

maximum

The total weight of corrector weights 5.0 kg

C.7 HULL

C.7.1 FITTINGS
(a) Construction
 Fairleads may be fitted to the rubbing strake, but shall not project beyond the outer edge of the rubbing strake.

(b) Use
 Buoyancy tank inspection hole covers and drainage plugs shall be kept in place at all times while racing.

C.8 HULL APPENDAGES

C.8.1 LIMITATIONS
Only one centreboard or dagger board and one rudder blade shall be aboard.
C.8.2 CENTREBOARD/ OR DAGGERBOARD

(a) **Construction**
A stop shall be fitted on the board to prevent it from being extending more below the hull excluding keel bands than permitted.

(b) **Dimensions**
The under hull part of the board in its lowest position shall conform to the equivalent plan with a tolerance of +/- 6mm on the bottom and trailing edge.

Depth of the centreboard or dagger board from the hull shell excluding keelband: maximum 710 mm

(c) **Use**
The centreboard or dagger board shall not be turned so that the aft side faces forward, or be rotated so that its aft edge is raked forward of perpendicular to the hull shell at the point it exits the hull shell.

C.8.3 RUDDER

(a) **Construction**
A device shall be fitted to keep the rudder attached to the hull even when capsized.

(b) **Dimensions**
The shape of the underwater part of the rudder shall conform to the full size plan with a tolerance of +/- 6mm on the bottom and trailing edge.

Depth, measured vertically from hull datum point, with the blade in the fully lowered position: maximum 600 mm

C.9 RIG

C.9.1 BOOM

Dimensions

<table>
<thead>
<tr>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spar band width</td>
<td>10 mm</td>
</tr>
<tr>
<td>Outer point distance</td>
<td></td>
</tr>
</tbody>
</table>

C.9.2 STANDING RIGGING
The use of a forestay is mandatory. The forestay or its extensions shall only meet the mast spar above the headsail halyard fitting/sheave and shall only meet the hull not more than 100mm from the stem, excluding any fittings and gunwale.

C.10 SAILS

C.10.1 LIMITATIONS
(a) Not more than one spinnaker shall be carried aboard.
C.10.2 MAINSAIL

(a) **Identification**

The sail identification shall comply with the RRS Appendix G with the exception that the class insignia do not need to be placed at different heights on the two sides of the sail.

The class emblem shall be the letters “FJ” not less than 300 mm high.

(b) **Use**

(1) The sail shall be hoisted on a halyard. The arrangement shall permit hoisting and lowering of the sail at all times.

(2) **Luff and foot** bolt ropes shall be in the **spar** grooves or tracks

C.10.3 HEADSAIL

(a) **Use**

(1) The **headsail tack** shall be attached at or aft of the forestay attachment.

(2) The sail shall be hoisted on a halyard. The arrangement shall permit hoisting and lowering of the sail at all times.

Section D – Hull

D.1 **GENERAL**

D.1.1 **IDENTIFICATION**

The sail number and national letters in figures and letters not less than 25 mm high shall be either cut into or indelibly marked on the hog or the top of the centreboard case or near the shroud fittings. If the hull is sold to another country, the new sail number and national letters shall be added.

D.1.2 **INTERNATIONAL CLASS FEE PLAQUE**

Hulls built, measured and registered after 30 June 1972 shall carry the International Class Fee Plaque fixed in a conspicuous position.

D.1.3 **DEFINITIONS**

(a) The **hull datum point** is the intersection on the **hull** centre plane between the underside of the hull shell and the transom, each extended as necessary.

(b) The **sheerline datum point** is the intersection on the **sheerline** between the hull shell and the transom, each extended as necessary.

(c) The keel line is the intersection line on the **hull** centre plane from transom to stem.

(d) The deckline is the imaginary line on the **hull** centre plane between the upper edge of the transom and the highest point of the stem excluding fittings.

(e) The baseline is the straight line on the **hull** centre plane through the points at the following vertical distances from the hull shell:

at **hull datum point** ... 175 mm
D.2 **HULL SHELL**

D.2.1 **MATERIAL**

The structure of the hull shall be inherently buoyant in the event of failure of all buoyancy tanks and/or bags.

D.2.2 **CONSTRUCTION**

(a) The transom shall be set at the extreme aft end of the hull.

(b) Drainage flaps shall not extend the lower surface of the hull shell.

(c) Keel band, if fitted, shall not be let in or faired into the hull shell.

D.3 **BUOYANCY TANKS**

D.3.1 **CONSTRUCTION**

(a) Hulls built from 1st January 1995 shall have at least two separated watertight buoyancy tanks.

(b) The hull shall have a separate bow buoyancy bag or slabs of rigid non-communicating air cell foam plastic of not less than 70 litres securely fastened or put into a tank.

(c) Buoyancy tank inspection holes shall be of sufficient size to enable inspection of secondary buoyancy. Covers shall be watertight, detachable and capable of resisting accidental dislodgement.

D.4 **GUNWALE AND RUBBING STRAKES**

D.4.1 Gunwale rubbing strakes shall be fitted along the topsides at the height of the sheerline

D.5 **ASSEMBLED HULL**

D.5.1 **HULL MEASUREMENT**

(a) Templates
(1) Templates used for official measurements shall be supplied by the ISAF.

(2) The sections to be measured by templates shall be taken as transverse planes through the following 3 points according to the measurement diagram. Distance from hull datum point measured along the keel line at:

Section 3 1115 mm
Section 6 2227 mm
Section 9 3340 mm

Distance from the sheerline datum point, measured along the sheerline on both sides of the hull at:

Section 3 1124 mm
Section 6 2237 mm
Section 9 3402 mm

(b) Section and stem measurement:

The section and stem templates shall be placed so that:

1. The template is situated entirely on the imaginary plane through the points set out on both sheerlines and on the keel.
2. The lugs (extensions) of the templates touch the skin.
3. The centre of the template is situated on the keel line of the hull.
4. The rubbing strake shall not prevent the template lug (extension) from touching the hull.

(c) Hull dimensions

<table>
<thead>
<tr>
<th>Hull dimensions</th>
<th>minimum</th>
<th>maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sum of the maximum positive and negative deviations taken over both sides of any transversal hull section checked by a template</td>
<td>............</td>
<td>10 mm</td>
</tr>
<tr>
<td>Vertical distance from the upper side of a template to the upper side of the deck at the sheerline</td>
<td>............</td>
<td>12 mm</td>
</tr>
<tr>
<td>Clearance of stem template between the end lugs with the aft end of the stem template within 6 mm of section 9</td>
<td>............</td>
<td>6 mm</td>
</tr>
<tr>
<td>Vertical distance from the upper side of the template at the sheerline, to the upper side of the deck at the stem with the aft end of the stem template within 6 mm of section 9</td>
<td>............</td>
<td>12 mm</td>
</tr>
<tr>
<td>Vertical distance from baseline to the outside of hull shell at: Section 3</td>
<td>64 mm</td>
<td>84 mm</td>
</tr>
<tr>
<td>Section 6</td>
<td>18 mm</td>
<td>38 mm</td>
</tr>
<tr>
<td>Sum of the vertical distance from the baseline to the outside of the hull shell at section 3 and 6</td>
<td>............</td>
<td>92 mm 112 mm</td>
</tr>
</tbody>
</table>
Beam of **hull**, excluding rubbing strakes, at **sheerline** at:

- At section 0 .. 1140 mm ... 1160 mm
- At section 3 .. 1465 mm .. 1485 mm
- At section 6 .. 1386 mm .. 1406 mm
- At section 9 .. 724 mm 744 mm

Hull length .. 4020 mm .. 4040 mm

Horizontal distance from centre of forestay attachment to forward end of **hull** excluding rubbing strakes .. 100 mm

Gunwale rubbing strakes:

- Depth ... 5 mm 35 mm
- Width ... 5 mm ... 90 mm
- Extension forward of stem .. 50 mm
- Extension aft of the transom 50 mm

Centreboard/dagger board slot from **hull datum point:**

- If fitted for a **centreboard** 1288 mm .. 2262 mm
- for a **dagger board** ... 1588 mm .. 2262 mm

Width of **centreboard/daggerboard** slot 40 mm

Transom

- Height of the transom at the **hull** centreplane 394 mm 406 mm
- Maximum radius between the hull shell and the transom .. 10 mm
- Angle between the transom and the extension of the keel line 78°....... 90°

- Deck height above the deckline 30 mm
 The spray deflector is not part of the deck.

Keel band:

- thickness ... 5 mm
- width .. 8.5 mm

D.5.2 FITTINGS

Spinnaker chutes are not permitted.
D.5.3 WEIGHT minimum
The weight of the hull in dry condition including all fixed fittings, buoyancy apparatus and protective finish, but excluding sails, spars, rigging, rudder, centreboard, hull appendages, movable fittings, floorboards unless glued to the hull shell and other equipment 75.0 kg

D.5.4 CORRECTOR WEIGHTS
Corrector weights shall be permanently fastened to the hull when the hull weight is less than the minimum requirement. maximum
The total weight of corrector weights .. 5.0 kg

SECTION E – HULL APPENDAGES

E.1 PARTS
E.1.1 MANDATORY
(a) Centreboard or daggerboard
(b) Rudder

E.2 GENERAL
E.2.1 RULES
(a) Hull appendages shall comply with the class rules in force at the time of certification.

E.3 PROHIBITIONS
A trim tab and similar contrivances are prohibited.

Section F – Rig

F.1 PARTS
F.1.1 MANDATORY
(a) Mast
(b) Boom
(c) Standing rigging
(d) Running rigging

F.1.2 OPTIONAL
(a) Spinnaker pole
F.2 GENERAL

F.2.1 RULES
(a) The spars and their fittings shall comply with the class rules in force at the time of certification of the spar.
(b) The standing and running rigging shall comply with these class rules.
(c) The lower limit mark, upper limit mark and outer limit mark shall be a band around the spar.

F.2.2 DEFINITIONS
(a) The mast datum point is the projection of the deckline on the back side of the mast. If the mast is deck stepped the mast datum point is the level of the deck on which the mast is placed.

F.3 MAST

F.3.1 MATERIALS
The spar shall be of wood or aluminium alloy. It may be anodised or coated.

F.3.2 DIMENSIONS

<table>
<thead>
<tr>
<th>Specification</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mast limit width</td>
<td></td>
<td>10 mm</td>
</tr>
<tr>
<td>Lower point height</td>
<td>650 mm</td>
<td></td>
</tr>
<tr>
<td>Upper point height</td>
<td></td>
<td>5500 mm</td>
</tr>
<tr>
<td>Spinnaker hoist height</td>
<td></td>
<td>4150 mm</td>
</tr>
<tr>
<td>Mast spar curvature at any point</td>
<td></td>
<td>40 mm</td>
</tr>
</tbody>
</table>

F.3.3 WEIGHTS

<table>
<thead>
<tr>
<th>Specification</th>
<th>Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mast weight:</td>
<td></td>
</tr>
<tr>
<td>if deck stepped</td>
<td>7.0 kg</td>
</tr>
<tr>
<td>if stepped inside the hull</td>
<td>7.5 kg</td>
</tr>
</tbody>
</table>

The mast shall be weighed without any removable parts of the trapeze system.

F.3.4 PROHIBITIONS
Rotating mast spars.

F.4 BOOM

F.4.1 MATERIALS
The boom shall be of wood or aluminium alloy. It may be anodised or coated.

F.4.2 DIMENSIONS

<table>
<thead>
<tr>
<th>Specification</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outer point distance</td>
<td></td>
<td>2440 mm</td>
</tr>
<tr>
<td>Outer limit mark width</td>
<td></td>
<td>10 mm</td>
</tr>
<tr>
<td>Boom spar cross section</td>
<td></td>
<td>100 mm</td>
</tr>
</tbody>
</table>
Boom spar curvature at any distance from outer point .. 20 mm

F.5 SPINNAKER POLE

F5.1 DEFINITION
The Spinnaker pole outer point is defined as the distance between the outer point of the spinnaker pole and the front side of the mast spar with the spinnaker pole in its normal fitting and position and held at right angles to the mast spar.

F.5.2 DIMENSIONS

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spinnaker pole outer point</td>
<td>1625 mm</td>
</tr>
</tbody>
</table>

F.6 STANDING RIGGING

F.6.1 CONSTRUCTION
(a) Mandatory
A wire rope forestay with a diameter not less than 2 mm.

F.6.2 PROHIBITIONS
(a) Roller reefing devices for the headsail.

F.7 RUNNING RIGGING

F.7.1 CONSTRUCTION
(a) Running backstays are not permitted.

Section G – Sails

G.1 PARTS

G.1.1 MANDATORY
(a) Mainsail
(b) Headsail

G.1.2 OPTIONAL
(a) Spinnaker

G.2 RULES

G.2.1 Sails shall comply with the class rules in force at the time of certification.

G.3 CERTIFICATION

G.3.1 The official measurer shall certify mainsails and headsails in the tack and spinnakers in the head and shall sign the certification mark and date it with the date the certification mark.
G.3.2 An MNA may appoint one or more persons at a sail maker to measure and **certify sails** produced by that manufacturer.

G.4 **CONSTRUCTION**

(a) All **sails** shall be **soft sails**.

(b) In contrary to the ERS Reinforcements having the effect of stiffening the **sail** shall be permitted within a distance of 320mm from the head, tack and clew, but it shall be possible to fold the sail (with one hand) in any direction with an external diameter not exceeding 4mm. All two or more layers of cloth which are greater size than normal seams or broad seams will be deemed reinforcement but shall be allowed provided it is not stiffened by the addition of bonding agents, close stitching or otherwise. Glued seams shall not be considered stiffening.

(c) No sail openings are permitted.

G.5 **MAINSAIL**

G.5.1 **CONSTRUCTION**

(a) The **sail** shall not have more then three **batten pockets**.

(b) **Double luff sail** is not permitted.

(c) **Loose footed sail** is not permitted.

(d) The **leech** between the **aft head point** and the upper **batten pocket**, between adjacent **batten pockets**, and between the lower **batten pocket** and the **clew point** shall not be convex.

G.5.2 **DIMENSIONS**

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leech length</td>
<td>5260 mm</td>
</tr>
<tr>
<td>Half width</td>
<td>1600 mm</td>
</tr>
<tr>
<td>Three-quarter width</td>
<td>1015 mm</td>
</tr>
<tr>
<td>Reinforcement size:</td>
<td></td>
</tr>
<tr>
<td>at a corner</td>
<td>320 mm</td>
</tr>
<tr>
<td>Headboard width, measured at right angles to the line of the luff</td>
<td>120 mm</td>
</tr>
<tr>
<td>Top width</td>
<td>160 mm</td>
</tr>
<tr>
<td>Distance from intersection of leech and centreline of the lower batten pocket and the quarter leech point</td>
<td>60 mm</td>
</tr>
<tr>
<td>Distance from intersection of leech and centreline of intermediate batten pocket and the half leech point</td>
<td>60 mm</td>
</tr>
<tr>
<td>Distance from intersection of leech and centreline of upper batten pocket and the three quarter leech point</td>
<td>60 mm</td>
</tr>
<tr>
<td>Distance from head point to intersection of luff and centreline of uppermost batten pocket</td>
<td>1290 mm</td>
</tr>
</tbody>
</table>

Batten pocket length:

- lowermost pocket: inside 525 mm
intermediate pocket:
 inside 775 mm
Batten pocket width:
 inside50 mm

G.6 HEADSAIL

G.6.1 CONSTRUCTION
(a) **Double luff sail** is not permitted.
(b) The **leech** from the **aft head point** to the **clew point** shall not be convex.

G.6.2 DIMENSIONS
 maximum
 Luff length3800 mm
 Leech length 3500 mm
 Foot length 1950 mm
 Foot median 3660 mm
 Top width ... 55 mm
 Foot irregularity .. 10 mm
 reinforcement size:
 at a corner 320 mm

G.7 SPINNAKERS

G.7.1 DIMENSIONS
 maximum
 Leech lengths 3600 mm
 Foot length ... 2400 mm
 Foot Median ... 4200 mm
 Half width 2600 mm
 Reinforcement size:
 at a corner 320 mm
SECTION H, PLANS, CLASS FLAG

H1 OFFICIAL PLANS:
 1 Sections, stem, centerboard and rudder full size and table of offsets
 2 Lines plan scale 1:10 (1954)

H2 FOR GUIDANCE ONLY:
 Suggested Single bottom construction wood, scale 1:10 (1973)
 Suggested GRP double bottom construction 1:10 (1964)

H3 RECOMMENDED CLASS FLAG:
 International code flag ‘Z’ is recommended.

Effective date: 1st March 2004
©ISAF (UK) Ltd., Southampton, UK